RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo XLIX (2000), pp. 371-380

NOTE ON HIT-AND-MISS TOPOLOGIES

LÁSZLÓ ZSILINSZKY

This is a continuation of [19]. We characterize first and second countability of the general hit-and-miss hyperspace topology τ_{Δ}^+ for weakly- R_0 base spaces. Further, metrizability of τ_{Δ}^+ is characterized with no preliminary conditions on the base space and the generating family of closed sets and a new proof on uniformizability (i.e. complete regularity) of τ_{Δ}^+ is given in this general setting, thus generalizing results of [3], [5] and [6].

0. Introduction.

Let (X, τ) be a topological space and CL(X) be the nonempty closed subsets of X. Following [2], [3], [5], [16], [17], [19], [20], [21] we will continue to study hit-and-miss hyperspace topologies or Δ -topologies on CL(X), where Δ is a fixed subfamily of CL(X). Two of the most studied hit-and-miss topologies are the Vietoris topology ([14], [13]) and the Fell topology ([7], [13], [17]). In a recent paper [5], *Di Maio* and *Holá* have found necessary and sufficient conditions for first and second countability, respectively of the Δ -topology τ_{Δ}^+ , if X is T_1 ; more on countability axioms and quasi-uniformizability of τ_{Δ}^+ was obtained by *Holá* and *Levi* in [9], where a characterization of metrizability of τ_{Δ}^+ is also given for a T_1 base space X and Δ containing the singletons. Moreover, in [3] (see also [2]),

¹⁹⁹¹ Mathematics Subject Classification. 54B20, Secondary 54D15, 54E35.

Key words and phrases. Hit-and-miss topologies, countability and separation axioms, metrizability, uniformizability.

Beer and *Tamaki* characterized unifomizability of τ_{Δ}^+ for a Hausdorff X and Δ containing the singletons.

It is the purpose of this paper to show that quite similar characterizations hold with no preliminary conditions (or with much less restrictive conditions) on X or Δ , respectively. This is achieved by applying techniques and notions from [19] and a completely new approach is employed to characterize complete regularity of τ_{Δ}^+ .

Note that a characterization of normality of τ_{Δ}^+ is not known except for some special cases, like the Vietoris topology ([11], [18]) or the Fell topology ([10]); for some more general results on normality see [6].

1. Notation and terminology.

In the sequel (X, τ) will be a topological space and CL(X) (resp. K(X)) will denote the nonempty closed (resp. nonempty closed compact) subsets of X. If $E \subset X$, then \overline{E} , int E, E^c will stand for the closure, interior and complement of E, respectively in X. Put $E^- = \{A \in CL(X); A \cap E \neq \emptyset\}, E^+ = \{A \in CL(X); A \subset E\}$. In what follows, Δ will be a fixed but arbitrary nonempty subfamily of CL(X) and for any $\Delta' \subset \Delta$, denote by $\Sigma(\Delta')$ the set of all finite unions of members of Δ' . The *hit-and-miss* or Δ -topology τ_{Δ}^+ for CL(X) has a base all sets of the form $(B^c)^+ \cup \bigcap_{i=1}^n U_i^-$ where $B \in \Sigma(\Delta), U_1, \ldots, U_n \in \tau$ and $n \in \mathbb{N}$ (cf. [3], [17]); this basic element will be denoted by $(U_1, \ldots, U_n)_B^+$ (cf; [20]). If $\Delta = CL(X)$, we obtain the familiar Vietoris topology τ_V , if $\Delta = K(X)$, the Fell topology τ_F .

In accordance with [3], Δ is said to be a *Urysohn family* provided whenever $A \in CL(X)$ and $B \in \Delta$ are disjoint, there exists $D \in \Sigma(\Delta)$ such that $B \subset \text{int } D \subset D \subset A^c$. Denote by \mathcal{F}_{Δ} the class of all continuous functions $f : X \to [0, 1]$ such that whenever inf $f < \alpha < \beta < \sup f$, there exists $D \in \Sigma(\Delta)$ with

$$f^{-1}([0, \alpha]) \subset D \subset f^{-1}([0, \beta]),$$

where $f^{-1}(M)$ stands for the preimage of $M \subset [0, 1]$. For $f \in \mathcal{F}_{\Delta}$ denote by m_f the *infimal value functional* on CL(X) (cf. [3]) defined by

$$m_f(A) = \inf\{f(x); x \in A\}$$
 for all $A \in CL(X)$.

372

We will say that X has property P_{Δ} provided whenever $A \in CL(X)$ and $x \in A^c$ there exists $D \in \Delta$ such that $D \subset A^c$ and $\overline{\{x\}} \cap D \neq \emptyset$ (see [19]). X is called *weakly-R*₀ provided X possesses property $P_{CL(X)}$ or equivalently provided every nonempty difference of τ -open sets contains a nonempty closed subset of X ([19]). Further, X is an R_0 -space if every open subset of X contains the closure of each of its points ([4]).

We will say that $E \subset X$ is *c*-hemicompact if there exists an increasing sequence of members of $K(X) \cap CL(E)$ which is cofinal in $K(X) \cap CL(E)$. Notions not defined in the paper are used in accordance with [12] (e.g. regular does not include T_1).

2. Main results.

First we need some auxiliary material:

LEMMA 2.1. Let X be weakly- R_0 , $B, D \in \Sigma(\Delta)$ and U_1, \ldots, U_n , $V_1, \ldots, V_m \in \tau$ $(m, n \in \mathbb{N})$. Then the following are equivalent:

- (*i*) $(U_1, \ldots, U_n)_B^+ \subset (V_1, \ldots, V_m)_D^+;$
- (ii) $B^c \subset D^c$ and for every $1 \le j \le m$ there exists an $1 \le i \le n$ such that $U_i \cap B^c \subset V_j \cap D^c$.

Proof. Denote $\mathcal{U} = (U_1, \ldots, U_n)_B^+$ and $\mathcal{V} = (V_1, \ldots, V_m)_D^+$. Suppose (i) and choose an $A \in \mathcal{U}$. If $B^c \setminus D^c$ is nonempty, then by the weak- R_0 property we can find a nonempty closed set $C \subset B^c \setminus D^c$. This implies that $A \cup C \in \mathcal{U} \setminus \mathcal{V}$, which contradicts (i), thus $B^c \subset D^c$. Further, if there exists a $1 \leq j \leq m$ such that for each $1 \leq i \leq n$, $\emptyset \neq U_i \cap B^c \setminus V_j \cap D^c$, then we can find a nonempty closed $A_i \subset U_i \cap B^c \setminus V_j \cap D^c$, but then $\bigcup_{i=1}^m A_i \in \mathcal{U} \setminus \mathcal{V}$, which is a contradiction again, so (ii) holds.

Conversely, suppose (ii) and pick an $A \in \mathcal{U}$. Then $A \subset B^c \subset D^c$. Further, for every $1 \leq j \leq m$ there is an $1 \leq i \leq n$ such that $U_i \cap B^c \subset V_i \cap D^c$, so $A \cap V_i \neq \emptyset$ since $A \cap U_i \neq \emptyset$. It means that $A \in \mathcal{V}$.

LEMMA 2.2. If $(CL(X), \tau_{\Delta}^+)$ is first countable, then every $A \in CL(X)$ is separable.

Proof. The proof of Lemma 5.3 in [5] works in every topological space

if point-closures are used instead of singletons.

We can now characterize first countability of the hit-and-miss topology for a weakly- R_0 base space X (cf. [5], Theorem 5.4):

THEOREM 2.3. Let X be a weakly- R_0 space. Then the following are equivalent:

- (i) $(Cl(X), \tau_{\Delta}^{+})$ is first countable;
- (ii) X is first countable, every closed set $A \subset X$ is separable and there exists a countable family $\Delta_A \subset \Delta$ such that whenever $B \in \Delta$ is disjoint to A, then $B \subset D \subset A^c$ for some $D \in \Sigma(\Delta_A)$.

Proof. The proof of Theorem 5.4 in [5] can be abopted if Lemma 2.1, Lemma 2.2 and point-closures are used insetad of singletons. In the implication (i) \Rightarrow (ii) only the proof of first countability of X needs some comments. Let $x \in X$ and put $A_x = \overline{\{x\}}$. In view of (i) there exist countable families $\Delta_x \subset \Delta$ and $\tau_x \subset \tau$ such that $\mathcal{B}_x = \{(U_1, \ldots, U_n)_B^+; B \in \Sigma(\Delta_x), U_1, \ldots, U_n \in \tau_x, n \in \mathbb{N}\}$ forms a countable local base at A_x in τ_{Δ}^+ . Choose any τ -open neighborhood U of x. Then $\mathcal{U} = (U_1, \ldots, U_n)_B^+ \subset U^-$ for some $\mathcal{U} \in \mathcal{B}_x$, thus by Lemma 2.1, $B^c \cap U_i \subset U$ for an $1 \le i \le n$ and clearly $x \in B^c \cap U_i$. It means that $\{B^c \cap U; B \in \Sigma(\Delta_x), U \in \tau_x\}$ is a countable local base at x.

As for second countability of the hit-and-miss topology we have (cf. [5], Theorem 5.13):

THEOREM 2.4. Let X be a weakly- R_0 space. Then the following are equivalent:

- (i) $(CL(X), \tau_{\Lambda}^{+})$ is second countable;
- (ii) X is second countable and there is a countable family $\Delta' \subset \Delta$ such that whenever $B \in \Delta$ and $A \in CL(X)$ are disjoint, then $B \subset D \subset A^c$ for some $D \in \Sigma(\Delta')$.

Proof. From (i) we get countable families $\Delta' \subset \Delta$, $\tau' \subset \tau$ such that

$$\{(U_1,\ldots,U_n)_B^+; B \in \Sigma(\Delta'), U_1,\ldots,U_n \in \tau', n \in \mathbb{N}\}\$$

374

forms a countable base of τ_{Δ}^+ . Then $\{B^c \cap U; B \in \Sigma(\Delta'), U \in \tau'\}$ is a countable base for X, which easily follows by Lemma 2.1. The rest of the proof is analoguous to that of Theorem 5.13 in [5].

It is shown in [19] that regularity and T_3 -ness of the Vietoris topology are equivalent. We show that it is a general feature of hit-and-miss topologies. First we need the following:

LEMMA 2.5. The functional $m_f : CL(X) \to [0, 1]$ is τ_{Δ}^+ -continuous for all $f \in \mathcal{F}_{\Delta}$.

Proof. Choose $f \in \mathcal{F}_{\Delta}$. Let $\inf f < \alpha < \beta < \sup f$ and $E \in m_f^{-1}((\alpha, \beta))$. Then $\alpha < \inf\{f(x); x \in E\} < \beta$, thus $E \cap f^{-1}((\alpha, \beta)) \neq \emptyset$ and for any $0 < \varepsilon < m_f(E) - \alpha$ we have $f^{-1}([0, \alpha + \varepsilon]) \subset E^c$. Since $f \in \mathcal{F}_{\Delta}$ we can find a $D \in \Sigma(\Delta)$ such that

$$f^{-1}([0, \alpha + \varepsilon/2]) \subset D \subset f^{-1}([0, \alpha + \varepsilon]),$$

whence $E \subset D^c$. Then $E \in (D^c)^+ \cap (f^{-1}((\alpha, \beta)))^- \subset m_f^{-1}((\alpha, \beta))$. \Box

The following theorem is proved in [3] (Theorem 3.6) for a T_2 base space and with Δ containing the singletons. Here we present a different proof in the completely general setting:

THEOREM 2.6. The following are equivalent

- (i) $(CL(X), \tau_{\Lambda}^{+})$ is a Tychonoff space;
- (ii) $(CL(X), \tau_{\Lambda}^{+})$ is completely regular;
- iii) $(CL(X), \tau_{\Lambda}^{+})$ is a T₃-space;
- (iv) $(CL(X), \tau_{\Lambda}^{+})$ is regular;
- (v) X has property P_{Δ} and Δ is a Urysohn family.

Proof. (v) \Rightarrow (i) In view of Theorem 1 in [19] it suffices to prove that the hyperspace is completely regular. An argument similar to that of in Lemma 3.1 of [3] yields for all $D \in \Delta$ and disjoint $A \in CL(X)$ an $f \in \mathcal{F}_{\Delta}$ such that f(D) = 0 and f(A) = 1. Let $A \in CL(X)$ and $\mathcal{U} = (U_1, \ldots, U_n)_B^+$ be a τ_{Δ}^+ -neighborhood of A, where $B \in \Sigma(\Delta)$, $U_1, \ldots, U_n \in \tau$ and $n \in \mathbb{N}$.

LÁSZLÓ ZSILINSZKY

Then $A \subset B^c$ and $A \cap U_i \neq \emptyset$ for all $1 \leq i \leq n$. In virtue of the preceding considerations there exist functions $f_0, f_1, \ldots, f_n \in \mathcal{F}_\Delta$ such that

$$f_0(B) = \{0\}$$
 and $f_0(A) = \{1\}$,
 $f_i(E_i) = \{0\}$ and $f_i(U_i^c) = \{1\}$ for each $1 \le i \le n$.

The by Lemma 2.5, $m_{f_0}, m_{f_1}, \ldots, m_{f_n}$ are τ_{Δ}^+ -continuous on CL(X)so $F = \max\{1 - m_{f_0}, m_{f_1}, \ldots, m_{f_n}\}$ is τ_{Δ}^+ -continuous as well. Clearly $1 - m_{f_0}(A) = m_{f_1}(A) = \cdots = m_{f_n}(A) = 0$ so F(A) = 0. Further if $E \notin \mathcal{U}$ then either $E \cap B \neq \emptyset$ or $E \subset U_i^c$ for some $1 \le i \le n$. In the first case $1 - m_{f_0}(E) = 1$, whence F(E) = 1 and in the second case $m_{f_i}(E) = 1$, so F(E) = 1 again.

All the remaining implications follows from Theorem 3 in [19], if regularity of the hyperspace forces X to have property P_{Δ} . Indeed, if $(CL(X), \tau_{\Delta}^+)$ is regular then it is also R_0 , further the hit-and-miss topology is always T_0 (see [16]) so it is a T_1 -space (cf. [4], Corollary), which completes the proof by Theorem 1 in [19].

If X is a Hausdorff space and Δ contains the singletons then X clearly possesses property P_{Δ} . Thus the following corollary generalises Theorem 3.6 of [3]:

COROLLARY 2.7. $(CL(X), \tau_{\Delta}^+)$ is uniformizable if and only if X possesses property P_{Δ} and Δ is a Urysohn family.

Finally we turn to characterizing metrizability of the hit-and-miss topology:

THEOREM 2.8. The following are equivalent:

- (i) $(CL(X), \tau_{\Lambda}^{+})$ is metrizable;
- (ii) $(CL(X), \tau_{\Lambda}^{+})$ is pseudo-metrizable;
- (iii) $(CL(X), \tau_{\Lambda}^{+})$ is second countable and regular,
- (iv) X possesses property P_{Δ} and there exists a countable family $\Delta' \subset \Delta$ such that whenever $B \in \Delta$ and $A \in CL(X)$ are disjoint there is a $D \in \Sigma(\Delta')$ with $B \subset int D \subset D \subset A^c$.

Proof. The equivalence (i) \Leftrightarrow (ii) follows from Theorem 2.8. For (i) \Rightarrow (iii) see Proposition 5.18(1) \Rightarrow (2) in [5], further our Lemma 2.2 and use point-closures instead of singletons. Now suppose (iii). Regularity of $(CL(X), \tau_{\Lambda}^{+})$ implies by Lemma 2(ii) of [19] that X is weakly- R_0 , so our Theorem 2.4 and Theorem 2.6 implies (iv) similarly as in [5] (Theorem 5.19 (1) \Rightarrow (2)). Finally, if we assume (iv) then according to Theorem 2.6, $(CL(X), \tau_{\Delta}^{+})$ is a T₃-space, consequently by Lemma 2(ii) of [19], X is weakly- R_0 so if X was second countable then in view of Theorem 2.4 the Δ -topology would be second countable and the Urysohn Metrization Theorem would yield (i). Hence, it remains to justify that the countable family $\mathcal{B} = \{int D; D \in \Sigma(\Delta')\}$ is a base for (X, τ) . Indeed, if U is a nonempty τ -open set and $x \in U$, then by property P_{Δ} there exists $B \in \Delta$ with $B \subset U$ and $B \cap \{x\} \neq \emptyset$. In virtue of the second condition of (iv) we can find $D \in \Sigma(\Delta')$ such that $B \subset int D \subset D \subset U$ (we can assume that $U \neq X$). Then $x \in \text{int } D \subset U$. □.

Remark 2.9. It is inferable from the proof of the preceding theorem that metrizability of $(CL(X), \tau_{\Delta}^{+})$ always forces second countability on X.

3. Applications.

In view of our preceding theorems we have:

THEOREM 3.1. (cf. [5], Theorem 5.5) Let X be weakly- R_0 . Then the following are equivalent:

- (i) $(CL(X), \tau_V)$ is first countable;
- *(ii) every closed subset of X is separable and has a countable base of neighborhoods.*

THEOREM 3.2. (cf. [5], Theorem 5.6) Let X be weakly- R_0 . Then the following are equivalent:

- (*i*) $(CL(X), \tau_F)$ s first countable;
- (ii) X is first countable every closed set is separable and every proper open subset is c-hemicompact.

Proof. (i) \Rightarrow (ii) The proof of hemicompactness of proper open subsets

of X in [1], Lemma 3.1 is feasible also in our case if closed compact sets are used instead of compact sets and point-closures instead of singletons. Further see our Theorem 2.3. In (ii) \Rightarrow (i) the proof of [5], Theorem 5.6 (2) \Rightarrow (1) is applicable (using *c*-hemicompactness instead of hemicompactness) along with our Theorem 2.3.

THEOREM 3.3. (cf. [19]; Theorem 4) The following are equivalent:

- (i) $(CL(X), \tau_V)$ is a Tychonoff space;
- (ii) $(CL(X), \tau_V)$ is completely regular;
- (iii) $(CL(X), \tau_V)$ is a T₃-space;
- (iv) $(CL(X), \tau_V)$ is regular;
- (v) $(CL(X), \tau_V)$ is uniformizable;
- (vi) X is normal and R_0 .

THEOREM 3.4. The following are equivalent:

- (i) $(CL(X), \tau_F)$ is a Tychonoff space;
- (ii) $(CL(X), \tau_F)$ is regular;
- (iii) $(CL(X), \tau_F)$ is a Hausdorff space;
- (iv) $(CL(X), \tau_F)$ is uniformizable;
- (v) X is a locally compact, regular space.

Proof. Cf. [17] (Folgerung (a), p. 162) and Theorem 2 of [19]. \Box

THEOREM 3.5. (cf. [14], Theorem 4.9.7) The following are equivalent:

- (i) $(CL(X), \tau_V)$ is metrizable;
- (ii) X is compact and pseudo-metrizable.

Proof. (i) \Rightarrow (ii) Suppose that $(CL(X), \tau_V)$ is metrizable. Denote by \tilde{X} the quotient space of X induced by identification of points with common closure in X. Then in view of Theorem 3 in [15], $(CL(\tilde{X}), \tilde{\tau}_V)$ is homeomorphic to $(CL(X), \tau_V)$, where $\tilde{\tau}_V$ is the Vietoris topology on $CL(\tilde{X})$,

consequently it is also metrizable. Further, $(CL(X), \tau_V)$ is a Hausdorff space so by Theorem 2 of [19], X is regular and hence R_0 as well. Accordingly \tilde{X} is a T_1 -space, thus by Theorem 4.9.7 of [14], \tilde{X} is compact, which implies compactness of X (cf. [15], Theorem 4). Now X is second countable by Remark 2.9, further it is regular, thus X is pseudo-metrizable (see [8], p. 167, Exercise 3).

(ii) \Rightarrow (i) Observe that a pseudo-metrizable space is R_0 , hence possesses property $P_{CL(X)}$ (i.e. weak R_0 -ness). Further by Lemma 2.2, X is a separable (pseudo-metrizable) space, accordingly second countable as well, which together with compactness and regularity of X easily yields the second condition of Theorem 2.8 (iv) for $\Delta = CL(X)$.

THEOREM 3.6. (cf. [1], Theorem 3.4) The following are equivalent:

- (i) $(CL(X), \tau_F)$ is metrizable;
- (ii) X is locally compact, regular and second countable.

Proof. (i) \Rightarrow (ii) According to Remark 2.9, X is second countable and in virtue of Theorem 3.4, X is locally compact and regular.

(ii) \Rightarrow (i) By local compactness plus regularity of *X*, *K*(*X*) forms a base of neighborhoods for closed compact subsets of *X* ([12], p. 146, Theorem 18). Further, second countability of *X* yields a countable subfamily of *K*(*X*) which forms also a base of neighboroods for members of *K*(*X*), thus the second condition of Theorem 2.8 (iv) is fulfilled for $\Delta = K(X)$. Finally, local compactness and regularity of *X* evidently imply property $P_{K(X)}$, thus Theorem 2.8 applies.

REFERENCES

- [1] Beer G., On the Fell Topology, Set-Valued Analysis, 1 (1993), 69-80.
- [2] Beer G., Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.
- [3] Beer G., Tamaki R., *The Infimal Value Functional and the Uniformization of Hitand-Miss Hyperspace Topologies*, Proc. Amer. Math. Soc., **122** (1994), 601-612.
- [4] Davis A., *Indexed systems of neighborhoods for general topological spaces*, Amer. Math. Monthly, 68 (1961), 886-893.
- [5] Di Maio G., Holá L'., On hit-and-miss topologies, Rend. Acc. Sc. Fis. Mat. Napoli, 62 (1995), 103-124.

LÁSZLÓ ZSILINSZKY

- [6] Di Maio G., Holá L'., Meccariello E., Notes on hit-and-miss topologies, Rostocker Math. Kolloq., to appear.
- [7] Fell J., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476.
- [8] Gaal S. A., Point Set Topology, Academic Press, New York, 1964.
- [9] Holá L'., Levi S., Decomposition properties of hyperspaces topologies, Set-Valued Anal., 5 (1997), 309-321.
- [10] Holá L'., Levi S., Pelant J., Normality and Paracompactness of the Fell topology, Proc. Amer. Math., Soc., 127 (1999), 2193-2197.
- [11] Keesling J., On the equivalence of normality and compactness in hyperspaces, Pacific J. Math., 33 (1970), 657-667.
- [12] Kelley J. L., General Topology, Springer-Verlag, New York, 1975.
- [13] Klein E., Thompson A., Theory of Correspondences, Wiley, New York, 1975.
- [14] Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
- [15] Mrševič M., Some proeprties of the space 2^X of a topological R_0 -space, Uspechi Mat. Nauk, **34** n. 6 (210) (1979), 166-170 (Russian).
- [16] Poppe H., Eine Bemerkung über Trennungsaxiome in Räumen von abgeschlossenen Teilmengen topologisher Räume, Arch. Math., 16 (1965), 197-199.
- [17] Poppe H., *Einige Bemerkungen über den Raum der abgeschlossenen Mengen*, Fund. Math., **59** (1966), 159-169.
- [18] Veličko N. H., On the space of closed subsets, Sibirsk. Math. Z. 16 (1975), 627-629. (Russian; English translation: Siberian Math. J., 16 (1975), 484-486).
- [19] Zsilinszky L., On separation axioms in hyperspaces, Rend. Circ. Matem. Palermo, 45 (1996), 75-83.
- [20] Zsilinszky L., Baire space and hyperspace topologies, Proc. Amer. Math. Soc., 124 (1996), 3175-3184.
- [21] Zsilinszky L., Baire spaces and weak topologies generated by gap and excess functionals, Math. Slovaca, **49** (1999), 357-366.

Pervenuto il 10 luglio 1996, In forma modificata il 2 luglio 1999.

> Department of Mathematics and Computer Science University of North Carolina at Pembroke Pembroke, NC 28372 - USA E-mail address: laszlo@nat.uncp.edu

380